Search results for "Point defects"
showing 10 items of 46 documents
Beyond ideal two-dimensional metals: Edges, vacancies, and polarizabilities
2018
Recent experimental discoveries of graphene-stabilized patches of two-dimensional (2D) metals have motivated also their computational studies. However, so far the studies have been restricted to ideal and infinite 2D metallic monolayers, which is insufficient because in reality the properties of such metallic patches are governed by microstructures pervaded by edges, defects, and several types of perturbations. Here we use density-functional theory to calculate edge and vacancy formation energies of hexagonal and square lattices of 45 elemental 2D metals. We find that the edge and vacancy formation energies are strongly correlated and decrease with increasing Wigner-Seitz radii, analogously…
Physical Fundamentals of Biomaterials Surface Electrical Functionalization
2020
This article is focusing on electrical functionalization of biomaterial&rsquo
Ge-doped silica nanoparticles: production and characterisation
2016
Silica nanoparticles were produced from germanosilicate glasses by KrF laser irradiation. The samples were investigated by cathodoluminescence and scanning electron microscopy, providing the presence of nanoparticles with size from tens up to hundreds of nanometers. The emission of the Germanium lone pair center is preserved in the nanoparticles and atomic force microscopy revealed the presence of no spherical particles with a size smaller than ~4 nm. The absorption coefficient enhancement induced by Ge doping is reputed fundamental to facilitate the nanoparticles production. This procedure can be applied to other co-doped silica materials to tune the nanoparticles features.
Structure of amorphous SiO 2 nanoparticles probed through the E′ γ centers
2011
We report an experimental investigation by electron paramagnetic resonance (EPR) spectroscopy on the properties of the E′ γ centers induced by β-ray irradiation in nanoparticles of amorphous SiO 2 (fumed silica) with mean diameters from 7 up to 40 nm. We found that the E′ γ centers are induced in all the fumed silica types in the dose range 4-400 kGy. They are characterized by an EPR line shape similar to that observed in common bulk silica materials independently on the particle diameter. Moreover, the E′ γ center concentration decreases on decreasing of the particle size for each given dose. Our findings are interpreted in terms of a shell-like model of nanoparticles in which it is assume…
Structural modifications induced by electron irradiation in SiO2 glass: Local densification measurements
2009
We report a study on the structural modifications induced in amorphous silicon dioxide (a-SiO2) by electron irradiation in the dose range from 1.2?103 to 5?106?kGy. This study has been performed by investigating the properties of the 29Si hyperfine structure of the E '? center by electron paramagnetic resonance (EPR) spectroscopy. Our data suggest that the structural modifications induced by irradiation take place through the nucleation of confined high-defective and densified regions statistically dispersed into the whole volume of the material. In addition, we have estimated that in the high dose limit (D?105?kGy) the degree of densification associated to the local (within the defective r…
Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation
2020
We investigated the nature, optical properties, and decay kinetics of point defects causing large transient attenuation increase observed in silica-based optical fibers exposed to short duration and high-dose rate x-ray pulses. The transient radiation-induced attenuation (RIA) spectra of pure-silica-core (PSC), Ge-doped, F-doped, and Ge + F-doped optical fibers (OFs) were acquired after the ionizing pulse in the spectral range of [∼0.8–∼3.2] eV (∼1500–∼380 nm), from a few ms to several minutes after the pulse, at both room temperature (RT) and liquid nitrogen temperature (LNT). Comparing the fiber behavior at both temperatures better highlights the thermally unstable point defects contribut…
First Principles Calculations of Atomic and Electronic Structure of TiAl3+- and TiAl2+-Doped YAlO3
2021
In this paper, the density functional theory accompanied with linear combination of atomic orbitals (LCAO) method is applied to study the atomic and electronic structure of the Ti3+ and Ti2+ ions substituted for the host Al atom in orthorhombic Pbnm bulk YAlO3 crystals. The disordered crystalline structure of YAlO3 was modelled in a large supercell containing 160 atoms, allowing simulation of a substitutional dopant with a concentration of about 3%. In the case of the Ti2+-doped YAlO3, compensated F-center (oxygen vacancy with two trapped electrons) is inserted close to the Ti to make the unit cell neutral. Changes of the interatomic distances and angles between the chemical bonds in the de…
First Principles Calculations of Atomic and Electronic Structure of Ti3+Al- and Ti2+Al-Doped YAlO3
2021
M.G.B. appreciates support from the Chongqing Recruitment Program for 100 Overseas Innovative Talents (grant no. 2015013), the Program for the Foreign Experts (grant no. W2017011), Wenfeng High-end Talents Project (grant no. W2016-01) offered by the Chongqing University of Posts and Telecommunications (CQUPT), Estonian Research Council grant PUT PRG111, European Regional Development Fund (TK141), and NCN project 2018/31/B/ST4/00924. This study was supported by a grant from Latvian Research Council No. LZP-2018/1-0214 (for AIP). Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Program H202…
Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers
2020
The so-called canonical optical fibers (OFs) are samples especially designed to highlight the impact of some manufacturing process parameters on the radiation responses. Thanks to the results obtained on these samples, it is thus possible to define new procedures to better control the behaviors of OFs in radiation environments. In this article, we characterized the responses, under steady-state X-rays, of canonical samples representative of the most common fiber types differing by their core-dopants: pure silica, Ge, Al, and P. Their radiation-induced attenuation (RIA) spectra were measured online at both room temperature (RT) and liquid nitrogen temperature (LNT), in the energy range [~0.6…
Photo-Activated Phosphorescence of Ultrafine ZnS:Mn Quantum Dots: On the Lattice Strain Contribution
2021
We address the enhancement of orange-light luminescence of Mn-doped zinc sulfide nanoparticles (NPs) induced by exposure to UV light. Ultrafine ZnS:Mn NPs are prepared by microwave-assisted crystal growth in ethanol, without adding any dispersant agents. When exposed to UV light, their orange emission intensity undergoes a strong increase. This effect is observed when the NPs are deposited as a thin layer on a transparent substrate or dispersed in an ethanolic suspension. Such a feature was already observed on polymer- or surfactant-coated ZnS:Mn NPs and explained as a passivation effect. In this study, by coupling X-ray photoelectron, Fourier transform infrared, and electron paramagnetic r…